

Chemical Equilibrium -3

1.										
1. Formation of dative bond										
	2. Formation of water by the combination of H ⁺ with OH ⁻									
	3. Transfer of proton									
	4. All of these									
2. NH ₃ is not a base according to										
	1. Bronsted theory	y 2. Lewis theory	3. Arrhenius theory	4. Lowry theory						
3. Assertion A: According to Bronsted concept H ₂ O is an amphoteric substance										
	Reason R: H ₂ O molecule can accept as well as donate a proton.									
1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.										
	2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.									
3) 'A' is true and 'R' are false.4) Both A and R are false										
								4. Which of the following can act as both Bronsted acid and a Bronsted base		
	(i) HCOO-	(ii) NH ₃	(iii) O ⁻²	(iv) HSO ⁻ 4						
	1. i and ii	2. ii and iii	3. ii and iv	4. i and iv						
5.	Which of the foll	owing is only Bronst	ed - Lowry acid but n	ot an Arrhenius acida						
	1) HC <i>l</i>	2) NH ₄ ⁺	3) BF ₃	4) CH ₃ COOH						
6.	Which of the fol	lowing species acts a	s Bronsted base but no	ot as acid?						
	1) CH ₃ COO ⁻	2) HCO ₃ ⁻	3) H ₂ PO ₂ ⁻	4) both1 &3						

7.	The conjugate	e base of hydrazoic a	cid is							
	1) N^{3-}	2) N ₃ ⁻	3) NH ₂ ⁻	$4) N_3H_2$	2+					
8.	Conjugate ac	aid of HPO_4^{2-} is								
	1) H ₃ PO ₄	2) H ₂ PO ₄ ⁻	3) PO ₄ ³ –	4) H ₃ PC	04					
9.	The conjugat	e acid of water is								
	1) OH-	2) H ⁺	3) H ₃ O ⁺	4) H ₃ O						
10.	10. In aqueous solution, HCl and HNO3 are equally strong. This is because									
	1) Their bas	sic ties are same	2) Both a	re oxy acids	of non-metals					
	3) Both have lower molecular weights 4) Leveling effect of water									
11. Which of the following acts as a Lewis acid in the following reaction?										
	$SnCl_4+2Cl^- \longleftrightarrow [SnCl_6]^{2-}$									
	1) C <i>l</i> ⁻	2) [SnCl ₆] ²⁻	3) SnC <i>l</i> ₄	4) 2C <i>l</i> ⁻						
12.	12. Which of the following is relatively strong Lewis acid?									
	1) BF ₃	2) BC <i>l</i> ₃	3) BBr ₃	4) BI ₃						
13.	In a complex	compound ligand ac	ets as							
	1) Lewis acid	2) Lewis base	3) Lowry-Bro	onsted acid	4) Arrhenius base					
14.	14. Which of the following species acts as a Lewis acid and also as a Lewis base?									
	1) SO ₂	2) SCl_4	3) Both SO_2	and SCl ₄	4) SO ₃					
15. Strength of an weak acid or a weak base depends upon its										
	1) Temperature		2) Nature of so	2) Nature of solvent						
	3) Degree of	dissociation	4) All the above							

16. Conjugate base of $[Al(H_2O)_6]$)6 ³⁺ :	ÌS
--------------------------------------	---------------------	----

- 1) $[Al(H_2O)_6]^{2+}$
- 2) $[Al(H_2O)_5OH]^{2+}$
- 3) $[Al(H_2O)_4OH]^2$
- 4) $[Al(H_2O)_4(OH)_2]^{2+}$

What is the decreasing order of strength of the bases OH^- , NH_2^- , H- CC^- and **17.** CH₃-CH₂⁻

1)
$$CH_3 - CH_2^- > NH_2^- > H - C \equiv C^- > OH^-$$

2) H -
$$C \equiv C^- > CH_3 - CH_2^- > NH_2^- > OH^-$$

3)
$$OH^- > NH_2^- > H - C \equiv C^- > CH_3 - CH_2^-$$

4)
$$NH_2^- > H - C \equiv C^- > OH^- > CH_3 - CH_2^-$$

- 18. Which of the following is an acidic salt?
 - 1) Na₃PO₄
- 2) Na₂H PO₃
- 3) NaH₂PO₂
- 4) NaH₂PO₄
- 19. Which of the following has least tendency to act as Lewis acid?
 - 1) I⁻

- $2) I^{+}$
- 3) SnC*l*₂
- 4) AlCl₃
- 20. Which of the following relatively more strong acid in aqueous solutions?
 - 1) HCl
- 2) HClO₄
- 3) HI
- 4) All are equally strong.
- 21. Which of the following is strong Lewis acid?
 - 1) Na⁺
- 2) Mg^{2+}
- 3) $A1^{3+}$
- 4) All show equal strength
- 22. Which of the following acts as Lewis acid?
 - 1) Zn^{2+}
- 2) FeC*l*₃
- 3) CO₂
- 4) All the above
- 23. Which of the following acts as Lewis base?
 - 1) C₂H₂
- 2) C_2H_4
- 3) Pyridine 4) All the above

- 24. The no.of conjugate acid-base pairs present in the aqueous solution of H₃PO₃ is
 - 1) 2
- 2) 3
- 3) 4
- 4) 5
- 25. H₂CO₃ ionises in two stages as represented below

$$H_2CO_3 + H_2O \Longrightarrow H_3O^+ + HCO_3^-$$

$$HCO_3^- + H_2O \iff H_3O^+ + CO_3^2 -$$

The no.of conjugate acid-base pairs in the above reaction are

- 1) 2
- 2) 3
- 3) 4
- 4) 5

26. A: HCl is not acidic in benzene.

R: Benzene does not accept protons.

- 1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.
- 2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.
- 3) 'A' is true and 'R' are false.
- 4) Both A and R are false.
- 27. A: H_3O^+ is the strongest acid in aqueous solution

R: water levels the strength of hydronium ion.

- 1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.
- 2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.
- 3) 'A' is true and 'R' are false.
- 4) Both A and R are false
- 28.A: ClO_4 is the weakest base.

R: In ClO₄⁻, chlorine atom is SP³ hybridised.

- 1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.
- 2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.
- 3) 'A' is true and 'R' are false.

	4)	Both	A	and	R	are	false
--	----	------	---	-----	---	-----	-------

29. A: All Bronsted bases are Lewis bases.

R: A species that accepts a proton necessarily should donate a lone pair of electrons.

- 1) 'A' and 'R' are true, 'R' is correct explanation of 'A'.
- 2) 'A' and 'R' are true. 'R' is not correct explanation of 'A'.
- 3) 'A' is true and 'R' are false.
- 4) Both A and R are false

30. The number of protons present in 10ml of water at 298K is

- $1)6.023X10^{14}$
- $2) 6.023X10^{16}$
- 3) $6.023X10^{19}$ 4) $6.023X10^{21}$

31. At 25° C, for an acid

- 1) $[H^+] > 10^{-7}M$
- 2) $[OH^{-}] < 10^{-7}M$ 3) pH < 7
- 4) All the above

32. Ionic product of water depends on

1) Volume of the water

2) Amount of salt in water

3) Temperature

4) All the above

33. At a given temperature, When an acid is added to water then the value of $\boldsymbol{K}_{\boldsymbol{W}}$

1) Decreases

2) Increases

3) Remains same

4) First decreases then increases.

34. If the ionic product of water is 1.96×10^{-14} at 35° C, What is its value at 10° C

- 1)1.96 X10⁻¹⁴
- 2) 3.92X 10⁻¹⁴ 3) 1.56X₁₀-15 4) 1.96 X₁₀-13

35. Which of the following is relatively stronger acid? K_a values are given in brackets

1) HA (2×10^{-4})

2) HB (3×10^{-5})

- 3) HC (1.8×10^{-3})
- 4) HD (9.6×10^{-10})

36. Which of the following is relatively stronger base? P^{kb} values are given in brackets.

- 1) AOH (5.8)
- 2) BOH (6.8)
- 3) COH (2.4)
- 4) DOH (10.9)

37. Which of the following statement is not correct?

- 1) Cl⁻ is a Lewis acid
- 2) The P^H of 10^{-8} M HCl solution is less than 7
- 3) The ionic product of water at 25° C is 10^{-14} M²
- 4) Bronsted Lowry theory could not explain the acidic nature of $AlCl_3$

38. Which of the following statement is correct?

- 1) Bronsted Lowry theory could not explain the acidic nature of BCl_3
- 2) The P^{H} of 0.01M NaOH solution is 2
- 3) The ionic product of water at 25° C is 10^{-10} M²
- 4) The P^H of a solution can be calculated using the equation $P^H = +log[H^+]$

39. The P^H of a solution of H_2O_2 is 6.0. Some Cl_2 gas is bubbled into this solution.

Which of the following is correct?

- 1) The $P^{\mbox{\scriptsize H}}$ of the resultant solution becomes 8
- 2) H₂ gas is liberated
- 3) The P^H of the resultant solution becomes less than 6.0 and ${\rm O}_2$ gas is liberated.
- 4) Cl_2O is formed in the resultant solution.

40. Which of the following is correct?

- 1) The P^H of one liter solution containing 0.49g of H_2SO_4 is 2.0.
- 2) The conjugate base of H_2S is S^{2-}
- 3) BF₃ is a Lewis base.

4) CH₃COO is amphoteric ion.

41. Which on of the following statements is not correct?

- 1) PH + POH = 14 for all aqueous solutions
- 2) The P^{H} of 10^{-8} M HCl is 8
- 3) The solution with $P^{H}=3$ is 100 times more acidic than the solution with $P^{H}=5$.
- 4) The conjugate base of ${\rm H_2PO_4}^-$ is ${\rm HPO_4}^2-$

42. Ostwald dilution law is applicable to

- 1) Strong electrolytes
- 2) Weak electrolytes
- 3) Non electrolytes
- 4) All types of electrolytes

43. The correct expression for Ostwald's dilution law is

1)
$$K_a = \frac{\alpha^2}{(1-\alpha)V}$$
 2) $K_a = \alpha^2 \cdot V$ 3) $K_a = \frac{\alpha^2}{1-V}$ 4) $K_a = \frac{\alpha^2}{C(1-\alpha)}$

44. For a weak acid, the concentration of H⁺ ions is given by

1)
$$\sqrt{K_a.C}$$

3)
$$\sqrt{K_a/C}$$

2)
$$K_a/C$$
 3) $\sqrt{K_a/C}$ 4) $\sqrt{C/K_a}$

45. Which of the following is wrong?

- 1) Degree of dissociation of a weak electrolyte increases with dilution.
- 2) Increase in temperature increases the ionisation.
- 3) Strong electrolytes are ionised completely even at moderate concentrations.
- 4) Addition of NH₄Cl to NH₄OH increases the ionisation of the latter.

46. Dissociation constant of water at 25° C is

1)
$$1.0 \times 10^{-14}$$
 2) 1×10^{14}

2)
$$1 \times 10^{14}$$

3) 14 4)
$$1.8 \times 10^{-16}$$

Solution; $K_a = K_w X 18/1000$

47.	One litre of water contains 10 ⁻⁷	moles of H ⁺	ions.	Degree of	ionisation	of water
	(in percentage) is					

1) 1.8×10^{-7} 2) 1.8×10^{-9} 3) 3.6×10^{-7} 4) 3.6×10^{-9}

Solution: One litre of water i.e 1000/18 moles contains 10⁻⁷ moles of H⁺ ions Then 100 moles of water contains $(100x\ 18/1000)10^{-7}=1.8X10^{-7}\%$

The P^H of 0.005 M Ba(OH)₂ is 48.

1) 2.301

2) 11.699

3) 12

4) 7

Solution; N=Mxacidity= $0.005x2=0.01=10^{-2}$, P^{OH}= $-\log 10^{-2}=2$ and P^H=14-2=12

Equal volumes of two solutions with $P^{H}=3$ and $P^{H}=11$ are mixed. Then the P^{H} of resulting solution is

1)8

2) 7

3) 6

4) 0

Solution; $P^H=3$ i.e $[H^+]=10^{-3}$ and $P^H=11$ i.e $P^{0}H=3$. As $P^H=P^{OH}$, solution is neutral.

The $P^{\mbox{\scriptsize H}}$ of a solution is 3.0. This solution is diluted by 100 times. Then the $P^{\mbox{\scriptsize H}}$ **50.** of the resulting solution is

1) 5

2) 7

3) 1

4) 11

Solution: As solution is diluted by 100 times, P^H increased by log 100 i.e 2 units.

KEY

1) 2	2) 3	3) 1	4)3	5) 2	6) 4	7) 2	8) 2	9) 4	10) 4
11) 3	12) 4	13) 2	14) 3	15) 4	16) 2	17) 1	18) 4	19) 1	20) 4
21) 3	22) 4	23) 4	24) 4	25) 2	26) 1	27) 1	28)	29) 1	30)1
31) 4	32) 3	33) 3	34) 3	35) 3	36) 3	37) 1	38) 1	39) 3	40) 1
41) 2	42) 2	43) 1	44) 1	45) 4	46) 4	47) 1	48) 3	49) 2	50) 1